A Whitehead Algorithm for Toral Relatively hyperbolic Groups

نویسندگان

  • Olga Kharlampovich
  • Enric Ventura
چکیده

The Whitehead problem is solved in the class of toral relatively hyperbolic groups G (i.e. torsion-free relatively hyperbolic groups with abelian parabolic subgroups): there is an algorithm which, given two finite tuples (u1, . . . , un) and (v1, . . . , vn) of elements of G, decides whether there is an automorphism of G taking ui to vi for all i.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Isomorphism Problem for Toral Relatively Hyperbolic Groups

We provide a solution to the isomorphism problem for torsion-free relatively hyperbolic groups with abelian parabolics. As special cases we recover solutions to the isomorphism problem for: (i) torsion-free hyperbolic groups (Sela, [60] and unpublished); and (ii) finitely generated fully residually free groups (Bumagin, Kharlampovich and Miasnikov [14]). We also give a solution to the homeomorp...

متن کامل

SLP compression for solutions of equations with constraints in free and hyperbolic groups

The paper is a part of an ongoing program which aims to show that the existential theory in free groups (hyperbolic groups or even toral relatively hyperbolic) is NP-complete. For that we study compression of solutions with straight-line programs (SLPs) as suggested originally by Plandowski and Rytter in the context of a single word equation. We review some basic results on SLPs and give full p...

متن کامل

Cat(0) and Cat(−1) Fillings of Hyperbolic Manifolds

We give new examples of hyperbolic and relatively hyperbolic groups of cohomological dimension d for all d ≥ 4 (see Theorem 2.13). These examples result from applying CAT(0)/CAT(−1) filling constructions (based on singular doubly warped products) to finite volume hyperbolic manifolds with toral cusps. The groups obtained have a number of interesting properties, which are established by analyzin...

متن کامل

Splittings and automorphisms of relatively hyperbolic groups

We study automorphisms of a relatively hyperbolic group G. When G is oneended, we describe Out(G) using a preferred JSJ tree over subgroups that are virtually cyclic or parabolic. In particular, when G is toral relatively hyperbolic, Out(G) is virtually built out of mapping class groups and subgroups of GLn(Z) fixing certain basis elements. When more general parabolic groups are allowed, these ...

متن کامل

The Structure of Limit Groups over Hyperbolic Groups

Let Γ be a torsion-free hyperbolic group. We study Γ–limit groups which, unlike the fundamental case in which Γ is free, may not be finitely presentable or geometrically tractable. We define model Γ–limit groups, which always have good geometric properties (in particular, they are always relatively hyperbolic). Given a strict resolution of an arbitrary Γ–limit group L, we canonically construct ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IJAC

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2012